Hydrodyna ic stability of viscous flow between rotating cylinders with radial flow

نویسندگان

  • Kyungyoon Min
  • Richard M. Lueptow
چکیده

A linear stability analysis has been carried out for flow between porous concentric cylinders when radial flow is present. Several radius ratios with corotating and counter-rotating cylinders were considered. The radial Reynolds number, based on the radial velocity at the inner cylinder and the inner radius, was varied from -30 to 30. The stability equations form an eigenvalue problem that was solved using a numerical technique based on the Runge-Kutta method combined with a shooting procedure. The results reveal that the’critical Taylor number at which Taylor vortices first appear decreases and then increases as the radial Reynolds number becomes more positive. The critical Taylor number increases as the radial Reynolds number becomes more negative. Thus, radially inward flow and strong outward flow have a stabilizing effect, while weak outward flow has a destabilizing effect on the Taylor vortex instability. Profiles of the relative amplitude of the perturbed velocities show that radially inward flow shifts the Taylor vortices toward the inner cylinder, while radially outward flow shifts the Taylor vortices toward the outer cylinder. The shift increases with the magnitude of the radial Reynolds number and as the annular gap widens.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure Calculation in the Flow Between Two Rotating Eccentric Cylinders at High Renolds Numbers

This paper reports the result of an analytical investigation of a steady, incompressible and viscous flow between two eccentric, rotating cylinders at high Reynolds number. A one dimensional case is far from reality because the gap between the cylinders is very small. Further, when their axes are displaced by a small distance, usually caused by bearing loads, two dimensional effects become obvi...

متن کامل

Entropy generation analysis of non-newtonian fluid in rotational flow

The entropy generation analysis of non-Newtonian fluid in rotational flow between two concentric cylinders is examined when the outer cylinder is fixed and the inner cylinder is revolved with a constant angular speed. The viscosity of non-Newtonian fluid is considered at the same time interdependent on temperature and shear rate. The Nahme law and Carreau equation are used to modeling dependenc...

متن کامل

Elastico-Viscous Flow between Two Rotating Discs of Different Transpiration for High Reynolds Numbers (RESEARCH NOTE)

The flow in an elastico-viscous fluid between two co-axial infinite rotating porous discs is considered for high cross flow Reynolds number. The discs are rotating with different angular velocity and the injection rate of the fluid at one disc is different from the suction rate of other disc. The effect of suction parameters on the velocity components have been investigated numerically and solv...

متن کامل

AXIAL FLOW IN A ROTATIONAL COAXIAL RHEOMETER SYSTEM 11: HERSCHEL BULKLEY MODEL

Following recent works of several authors like Huilgol, Bhattacharya etd. and Javadpour et al., this paper is to contribute further to the literature of axial flow in a rotational coaxial rheometer. We consider axial flow of Herschel Bulkley mode1 between two concentric cylinders with the inner one rotating, while the outer cylinder is held stationary. An attempt has been made to direct the...

متن کامل

Onset of Instability in Hydromagnetic Couette Flow

The stability of viscous flow between rotating cylinders in the presence of a constant axial magnetic field is considered. The boundary conditions for general conductivities are examined. It is proved that the Principle of Exchange of Stabilities holds at zero magnetic Prandtl number, for all Chandrasekhar numbers, when the cylinders rotate in the same direction, the circulation decreases outwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999